El láser es simplemente una fuente luminosa con dos propiedades muy especiales e importantes de su luz, que técnicamente reciben los nombres de coherencia espacial y coherencia temporal. Aunque estos nombres pueden parecer impresionantes, denotan unas características de la luz que pueden ser explicadas fácilmente.
A fin de ilustrar lo anterior, consideremos una fuente luminosa muy pequeña a la que llamaremos puntual, que emite luz cuyos frentes de onda son esféricos y concéntricos con dicho punto. Si colocamos una lente convergente frente a esta fuente luminosa, como se muestra en la figura 22 (a), veremos que la onda se refracta, haciéndose ahora el haz luminoso convergente a un punto después de esta lente. Este ejemplo es sólo imaginario e idealizado, pues las fuentes luminosas puntuales no existen en la vida real, ya que por pequeñas que sean tienen un tamaño finito. Por lo tanto, las fuentes luminosas reales no emiten una sola onda con frentes de onda esféricos, sino una multitud, cada una de ellas saliendo de un punto diferente sobre la fuente. Al colocar ahora la lente convergente frente a esta fuente de luz, la energía luminosa ya no se concentra en un punto infinitamente pequeño después de la lente, como en nuestro experimento imaginario. Lo que se obtiene es simplemente una imagen de la fuente luminosa, con la energía distribuida sobre toda su área, como se muestra en la figura 22(b).
Figura 22. Lente convergente frente a una fuente luminosa a una distancia mayor que su distancia focal. (a) Fuente puntual y (b) fuente extendida.
Figura 23. Lente convergente con una fuente luminosa colocada en su foco anterior. (a) Fuente puntual y (b) fuente extendida.
Volviendo de nuevo a nuestro experimento idealizado, supongamos que la lente se coloca frente a la fuente luminosa puntual, de tal manera que quede sobre el foco de la lente convergente, como se muestra en la figura 23(a). La luz saldría entonces de la lente en un haz de rayos paralelos, o lo que es lo mismo, con frentes de onda planos y paralelos entre sí, como se muestra en esta misma figura. Como las fuentes luminosas no son infinitamente pequeñas, la luz no saldrá como un haz de rayos paralelos, sino como una multitud de haces, todos viajando en diferentes direcciones, como se muestra en la figura 23(b). De esta manera se esparce la energía luminosa en la forma de un cono divergente. Se dice que la fuente infinitamente pequeña o puntual tiene una coherencia espacial perfecta, mientras que la extendida la tiene muy pobre. Desafortunadamente, son muchísimas las situaciones en las que es necesario tener una gran coherencia espacial: por ejemplo, para tener un frente de onda único en interferometría, para concentrar la energía luminosa en un punto muy pequeño a fin de obtener una densidad de energía muy alta, o para enviar el haz luminoso a gran distancia. Como es fácil de entender, se puede obtener una fuente luminosa de gran coherencia espacial colocando simplemente una hoja de papel aluminio con una perforación muy pequeña hecha con una aguja sobre una fuente de luz extendida. Sin embargo, de esta manera se reduce considerablemente la intensidad luminosa, como se muestra en la figura 24. Otra manera sería alejar la fuente una gran distancia, hasta que ya no se le aprecie ningún tamaño, sino que se le vea como un punto, como es el caso de las estrellas. También en este caso se reduce la intensidad luminosa de manera considerable. La luz de un láser tiene una coherencia espacial casi perfecta, sin ningún sacrificio de su intensidad.
La segunda propiedad del láser tiene que ver con la cantidad de colores que emite la fuente luminosa simultáneamente, es decir, con el grado de monocromaticidad. Por ejemplo, una fuente de luz blanca no es nada monocromática, pues emite todos los colores del arco iris al mismo tiempo. La luz emitida por un foco rojo o de cualquier otro color sería menos policromática, porque contiene luz de varios colores cercanos al rojo, por ejemplo, naranja e infrarrojo. Una fuente de luz bastante monocromática se puede obtener mediante varios procedimientos basados en los fenómenos de la dispersión de la luz en un prisma, en el de la difracción en una rejilla de difracción o en el de la interferencia en los filtros de interferencia. Desafortunadamente todos estos métodos se basan en la eliminación de los colores indeseados, pero de ninguna manera refuerzan el deseado. Por lo tanto, el haz de luz se hace sumamente débil. Mientras más monocromático sea un haz luminoso, se dice que tiene más coherencia temporal. En cambio, la luz de un láser tiene coherencia temporal casi perfecta, es decir, tiene una alta monocromaticidad.
Figura 24. Simulación de una fuente de luz con coherencia tanto espacial como temporal, por medio de una pequeña perforación, y un filtro de color con banda de transmisión muy angosta. (a) Fuente luminosa, (b) fuente luminosa con filtro de color y (c) fuente luminosa con filtro de color y diafragma.
Recordemos ahora que la luz es una onda electromagnética idéntica en todo a una onda de radio o televisión, sólo que su frecuencia es mucho más alta, y por lo tanto su longitud de onda (distancia entre dos crestas de la onda) es mucho más corta. Cuando decíamos que la fuente de luz debería ser muy pequeña para tener coherencia espacial grande, lo pequeño o grande de la fuente era en comparación con la longitud de onda de la onda luminosa. De aquí se puede concluir que es relativamente más fácil producir una onda de radio coherente que una onda de luz coherente. Esta es la razón por la cual prácticamente todas las ondas de radio y televisión son coherentes, y por supuesto existen mucho antes de la aparición del láser.CÓMO FUNCIONA EL LÁSER
A fin de comprender el fenómeno de emisión estimulada, comencemos por recordar que la luz es emitida y absorbida por los átomos mediante los mecanismos llamados de emisión y de absorción, respectivamente. Si el electrón de un átomo está en una órbita interior, puede pasar a una exterior solamente si absorbe energía del medio que lo rodea, generalmente en la forma de un fotón luminoso. Este es el proceso de absorción que se representa mediante los diagramas de la figura 25(a). Si el electrón se encuentra en una órbita exterior, puede caer a una órbita interior si pierde energía, lo cual puede también suceder mediante la emisión de un fotón. Este proceso de emisión se muestra en los diagramas de la figura 25(b). En ambos procesos la frecuencia V de la onda absorbida o emitida está determinada por la magnitud E de la energía emitida o absorbida, según la relación ya obtenida por Planck, como mencionamos anteriormente:
Figura 25. Esquemas que representan los procesos atómicos de (a) emisión espontánea, (b) absorción y (c) emisión estimulada.
Cuando un electrón está en una órbita exterior también decimos que está en un estado superior. El electrón no puede permanecer en un estado superior un tiempo demasiado grande, sino que tiende a caer al estado inferior, emitiendo un fotón, después de un tiempo sumamente corto, menor que un microsegundo, al que se denomina vida media del estado. Es por eso que este proceso de emisión se conoce como emisión espontánea. Figura 26. Emisión incoherente de fotones de una fuente de luz extendida.
La energía que necesita un electrón para subir al estado superior no necesariamente se manifiesta bajo la forma de fotón luminoso. También puede absorber la energía que se le comunique mediante otros mecanismos, como por ejemplo, mediante una colisión con otro átomo. Si estamos subiendo constantemente los átomos de un cuerpo al estado superior mediante un mecanismo cualquiera, éstos caerán espontáneamente al estado inferior emitiendo luz. A este proceso se le conoce con el nombre de "bombeo óptico". La emisión de luz es entonces un proceso en el que todos los átomos del cuerpo participan, pero en forma independiente y totalmente desincronizada. Dicho de otro modo, las fases de las ondas no tienen ninguna relación entre sí, o lo que es lo mismo, las crestas de estas ondas no están alineadas, como se muestra en la figura 26. Figura 27. Amplificación de luz por medio de emisión estimulada.
Existe una segunda forma de emisión de luz por un átomo, llamada emisión estimulada, que se representa mediante el diagrama de la figura 25(c). Si un electrón está en el estado superior y recibe un fotón de la misma frecuencia del que emitiría si bajara al nivel inferior, desestabilizará a este átomo, induciéndolo a emitir inmediatamente. Después de esta emisión estimulada existirán dos fotones en lugar de uno, el que estimuló y el estimulado. Naturalmente, para que la emisión estimulada tenga lugar se requiere que el electrón permanezca en el estado superior un tiempo suficientemente largo para darle oportunidad al fotón estimulador a que llegue al átomo. Por esta razón, el proceso de emisión estimulada es más fácil si el nivel superior tiene una vida media relativamente larga. Como los átomos tienden constantemente a caer al estado o nivel inferior, la mayoría de ellos en un momento dado estarán ahí. Lo que logra el bombeo óptico es que la mayoría de los átomos estén constantemente en el nivel superior. Este proceso se denomina inversión de población, y es absolutamente indispensable para que se produzca la emisión láser. Consideremos un material en la figura 27, sujeto a bombeo óptico a fin de que sus átomos regresen constantemente al nivel superior. Supongamos también que la vida media de este estado superior es lo suficientemente larga como para permitir la emisión estimulada. Finalmente, hagamos incidir en este material un fotón de la frecuencia adecuada para provocar la emisión estimulada. Es fácil ver que se provocará una reacción en cadena, por lo que a la salida se tendrán no uno, sino una multitud de fotones. Dicho de otro modo, se habrá amplificado la luz mediante el mecanismo de emisión estimulada.
A fin de que éste sea un proceso continuo, podemos colocar un espejo semitransparente a la salida, para regresar parte de los fotones que salen, y así seguir provocando la emisión estimulada. A la entrada se coloca otro espejo, totalmente reflector. Este dispositivo se muestra en la figura 28. Naturalmente, el lector se estará preguntando cómo se puede ahora introducir al láser el primer fotón disparador de la emisión estimulada. Esto no es necesario, pues tarde o temprano se producirá un fotón por emisión espontánea.
Figura 28. Uso de espejos retroalimentadores de la luz para hacer un láser.
Ricardo Monroy C.I. 17646658
No hay comentarios:
Publicar un comentario